Deriving a Graph Rewriting System from a Complete Finite Prefix of an Unfolding
نویسندگان
چکیده
منابع مشابه
Deriving a Graph Rewriting System from a Complete Finite Prefix of an Unfolding
The starting point of this paper is McMillan’s complete finite prefix of an unfolding that has been obtained from a Petri net or a process algebra expression. The paper addresses the question of how to obtain the (possibly infinite) system behaviour from the complete finite prefix. An algorithm is presented to derive from the prefix a graph rewriting system that can be used to construct the unf...
متن کاملA Complete Finite Prefix for Process Algebra
In this paper we show how to use McMillan’s complete finite prefix approach for process algebra. We present the model of component event structures as a semantics for process algebra, and show how to construct a complete finite prefix for this model. We present a simple adequate order (using an order on process algebra expressions) as an optimization to McMillan’s original algorithm.
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
Computation of Transition Adjacency Relations Based on Complete Prefix Unfolding
An increasing number of works have devoted to the application of Transition Adjacency Relation (TAR) as a means to capture behavioral features of business process models. In this paper, we systematically study the efficient TAR derivation from process models using unfolding technique which previously has been used to address the state space explosion when dealing with concurrent behaviors of a ...
متن کاملInferring an indeterminate string from a prefix graph
An indeterminate string (or, more simply, just a string) x = x[1..n] on an alphabet Σ is a sequence of nonempty subsets of Σ. We say that x[i1] and x[i2] match (written x[i1] ≈ x[i2]) if and only if x[i1]∩x[i2] 6= ∅. A feasible array is an array y = y[1..n] of integers such that y[1] = n and for every i ∈ 2..n, y[i] ∈ 0..n−i+1. A prefix table of a string x is an array π = π[1..n] of integers su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Theoretical Computer Science
سال: 1999
ISSN: 1571-0661
DOI: 10.1016/s1571-0661(05)80293-2